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Abstract—The vehicle-to-grid (V2G) technology provides an
opportunity to generate revenue by selling electricity back to the
grid at peak times when electricity is more expensive. Instead
of sharing a contaminated pump handle at a gas station during
the current covid-19 pandemic, plugging in the electric vehicle
(EV) at home makes feel much safer. A V2G control algorithm is
necessary to decide whether the electric vehicle (EV) should be
charged or discharged in each hour. In this paper, we study the
real-time V2G control problem under price uncertainty where
the electricity price is determined dynamically every hour. Our
model is inspired by the Deep Q-learning (DQN) algorithm which
combines popular Q-learning with a deep neural network. The
proposed Double-DQN model is an update of the DQN which
maintains two distinct networks to select or evaluate an action.
The Double-DQN algorithm is used to control charge/discharge
operation in the hourly available electricity price in order to
maximize the profit for the EV owner during the whole parking
time. Experiment results show that our proposed method can
work effectively in the real electricity market and it is able to
increase the profit significantly compared with the other state-
of-the-art EV charging schemes.

Index Terms—vehicle-to-grid, deep Learning, electric vehicles,
reinforcement learning, double Q-network.

I. INTRODUCTION

Efficient integration of electric vehicles (EVs) in the distri-
bution network is necessary for the implementation of smart
city. Vehicle-to-grid (V2G) technology allows the EV to either
provide power to the grid or take power from the grid in a
bidirectional manner (Fig. 1). V2G operations increase during
COVID-19 outbreak and EV owners are the real winners in the
crisis. Charging the car cheaply at home feels a whole lot safer
than sharing a contaminated gas station pump. The transport
system that emerges from the COVID-19 crisis embraces V2G
technology to make the smartest choices possible.

Smart control of V2G systems has been extensively inves-
tigated by researchers in the power grid community. We may
classify the developed approaches according to their underly-
ing assumptions into two main groups. The first group assume
the future V2G information including driving, environment,
pricing, and demand time series is known in advance and
thus are not real-time. These methods seek for an optimiza-
tion method towards optimum scheduling of charge/discharge

Fig. 1: Bidirectional V2G system connection.

actions, namely binary particle swarm optimization [1], fuzzy-
logic method [2], Monte Carlo simulations [3], simulated
annealing [4]. Several optimal control solutions based on
dynamic programming (DP) algorithm are proposed in smart
grid context [5]–[7]

The second group are more challenging due to the lack of
the future information. The models in this group are mainly
based on the learning systems. A subset of this group uses
the historical data to predict the future required information
(prediction based V2G systems). In particular, an AI model
namely, support vector machine (SVM) [8], neural networks
(NN) [9], or combination of SVM and NN [10] is trained to
make real time decisions. In the other subset of methods, an
agent explores the unknown V2G environment and learns the
value associated to each action taken in different set of states
(Reinforcement Learning (RL) integrated V2G systems). The
instructed action-value function defines a decision criterion
which helps to take the optimum actions in an immediate
(real-time) manner [11], [12]. In this paper, we apply the deep
Q-learning, the most established realization of RL approaches,
to control V2G system. Our goal is to build a smart system
that determines when to charge, discharge or be neutral (no
charge/discharge), based on the current and historical system
information.

For systems with continuous observation, the application
of the neural networks to Q-learning, termed a Q-Network
[13] is developed. Deep learning is the term given to neural
networks with many layers, and has been shown to be effective978-0-7381-4309-5/20/$31.00 ©2020 IEEE



in learning high level features from large input spaces [14],
[15]. The training instability of Q-learning is addressed by the
introduction of Double variant of Deep Q-Networks [16]. The
Double DQN method reduces the correlations of the action-
values with the target .

In this paper a Double-DQN V2G control system is pro-
posed. The method is tested on the real Nord pool electricity
price for decision making (charge/discharge). The Double-
DQN V2G system is compared with DQN, shallow Q-network,
and prediction based NN methods under diverse testing con-
ditions. The comparisons show that the proposed method is
much robust to different V2G uncertainty conditions and could
make reliable profits under real electricity price markets.

The outline of this paper is as follows. Section II presents
a general formulation of the V2G control problem. Section
III describes the deep Q-learning approach and presents the
implementation details of the Double-DQN V2G system. The
experimental results and performance comparison with other
methods are presented in Section IV. Finally, V concludes the
paper.

II. V2G CONTROL PROBLEM FORMULATION

The V2G control problem is considered for a single EV
arriving at time-step t0. It is assumed that once the EV is
parked, its departure time td and the expected state-of-charge
(SoC) at departure, SoCd, are notified. The hourly market
pricing for purchasing and selling electricity (in Eur/kWh) is
indicated by pt. Let 0 ≤ SoCt ≤ 1 be the percentage of the
battery power capacity that is available at time point t and
lt denote the time left for departure. The state space of the
V2G control problem comprises of the pricing space, the SoC
space, and the remaining time space. The state of the system
at time t is then defined as st = [pt, bt, lt].

The action in the V2G control problem can be interpreted
as choosing one control operation from the action space A =
{charge, discharge, neutral (no charge/discharge)}. However,
due to the constraints in the V2G control problem, not all
the actions can be performed at a given state. The set of all
possible actions given the state of the system is limited by two
types of constraints in the V2G control problem.

The first constraint is that the EV must be charged to
the expected SOC at departure. It must be considered that
EV rate of charge/discharge is limited. Let C denote the
charging rate which is the percentage of the battery energy
capacity that can be charged per hour. We assume the absolute
discharging rate is the same as the charging rate denoted
by −C. The discharging action is then not allowed when
lt ≤ ⌈SoCd−SoCt

C ⌉.
The V2G control requires a policy that accounts for charging

characteristics of the EV battery in order to protect the EV
battery from damaging. Then the charge and discharge actions
are forbidden when the SoC is approaching the maximum
(e.g., 95%) and minimum (e.g., 5%), respectively.

Reward function is a key ingredient of the reinforcement
learning systems. The reward is defined as the financial rev-
enue for the EV owner. As the charging/discharging operations

are performed at the rate C, the energy flow is equal to
EC, where E is the battery capacity of the EV in kWh. The
corresponding rewards for the charging action is then negative
i.e. −ptEC which means the money is paid by the owner.
However, the corresponding rewards for the discharging action
is positive (ptEC), as the owner gains money during discharge
actions by selling the battery energy to the grid.

III. DOUBLE DEEP Q-NETWORK V2G CONTROL SYSTEM

Reinforcement learning (RL) is a general framework to deal
with sequential decision tasks. Fig. 2 shows the schematic
of the V2G control system using reinforcement learning with
DQN method and its Double-DQN extension. At each time
step t, RL observes the status st of the environment, takes an
action at, and receives some reward rt from the environment.
With sufficient pairs of (st, at, rt), RL can learn an optimal
decision policy Q∗ that maximizes the long-term accumulated
reward.

Q∗(s, a) = maxπEπ{Rt|st = s, at = a} (1)

The Q-function holds a nice property formulated as the
Bellman equation:

Q∗(st, at) = r + γmaxaQ
∗(st+1, a) (2)

In the case of continuous state s, a neural network is
often used to approximate the value Q(s, a). This network is
often referred as a Q-network [13]. If the Q-network involves
multiple layers, we obtain the deep Q-learning architecture. It
has been well-known that deep learning is capable of learning
hierarchical patterns, and the patterns learned by the top-layers
tend to be abstract and invariant against disturbance. The Q-
network can be trained by minimizing the Q prediction error,
i.e., the difference between the left-hand and right-hand side
of Eq. 2. The loss function is then formulated as follows:

min
θ

L(θ) =
∑
i∈V

(yi −Q(si, ai | θ))2,

yi = ri + γmaxaQ̃(si+1, a | θ), (3)

where i and θ denote the training iteration and the parameters
of the Q-network, respectively. The training examples are
in the form of (si, ai, ri, si+1), and B denotes the buffer
containing the recent training examples. Additionally, yi is
the prediction of Q(s, a) given by the Bellman equation 2.

This loss function can be minimized by the stochastic
gradient descend (SGD) algorithm. The gradient with respect
to θ is given by

∇θL =
∑
i∈V

(yi −Q(si, ai | θ))∇θQ(si, ai | θ) (4)

where ∇θQ(si, ai | θ) can be easily computed by the back-
propagate (BP) algorithm.

We avoid the divergence of direct implementation of the
trading system with neural networks due to using the same Q-
network in calculating the target value yi in (3). Our solution
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Fig. 2: Schematic of the RL-based V2G control system. (a) DQN , (b) Double-DQN.

Algorithm 1 Training process of the Double-DQN V2G control system
function Double-DQN-V2G{si = [pi, bi, li], i = 1, . . . , td}

1: Initialize replay buffer B to a defined capacity.
2: Initialize action-value Q-function with random weights θ
3: Initialize target action-value Q̃-function with weights θ̃ ← θ
4: for episode 1,M do
5: Receive initial electricity price sequence p1 and form initial state s1 = [p1, b1, l1]
6: for t steps do
7: With probability ϵ select a random action, otherwise select at = argmaxaQ(st, a; θ)
8: Execute at and observe reward r and new price sequence pt+1 (next state: st+1 = [pt+1, bt+1, lt+1])
9: Store transition {st, at, rt, st+1} in buffer

10: Sample random batch of transitions from B
11: Perform a gradient descent step on (4) with respect to the network parameters θ
12: Update the target network using (5).
13: end for
14: end for
15: Return θ, θ̃

is similar to the target network used in Fig. 2 (b) for Q-
learning. The authors in [16] show that it is required to have a
target Q̃ to have stable targets yi in order to train the system,
consistently. A copy of the Q-network is created and then used
for calculating the target values. The weights of the target Q̃
network (indicated by θ̃ are softly updated by interpolating
with the latest θ, as follows:

θ̃ = τθ + (1− τ)θ̃, (5)

where τ is the interpolation factor. The relatively unstable
problem of learning the action-value function is then moved
closer to a case of robust supervised learning problem. Al-

though, the delay in the update of target values may slow
learning, in practice the stability of learning is greatly out-
weighed. Note that the decision of the trading is made based
on the target network Q̃, rather than the present network Q. An
overview of the Double-DQN method for V2G system control
is outlined in Algorithm. 1.

IV. EXPERIMENTAL RESULT

In the results reported in this section, our proposed real-time
V2G control algorithm is evaluated using the actual electricity
spot price data of Oslo zone from Nord pool power market
illustrated in Fig. 3. The dataset consists of historical hourly



electricity prices (Eur/MWh) from January 1, to December 31
corresponding to the year 2019. For simplicity, we consider
the case where the proposed V2G control algorithm is run for
a single EV on different days with exactly the same conditions.
We consider the vehicle type, Nissan Leaf 2016, with battery
energy capacity of E = 24kWh. The charging rate C =
0.1. We assume that the EV arrives at 8:00 in the morning
every day and departs at 16:00 in the afternoon with expected
departure SoC of 70%. The range of arrival SoC is selected
to be uniformly distributed in [0.2, 0.8].

We compare the proposed Double-DQN V2G system with
the performance of standard Deep Q-network (DQN) and
Shallow Q-network (SQN). Moreover, the performance of
proposed method is compared with the prediction-based NNs
namely, Shallow Neural Network (SNN), Convolutional Deep
Neural Network (CDNN), RNN and long short-term memory
(LSTM).

The goal of the prediction-based NN is to predict whether
the electricity price of the next hour is going higher, lower,
or suffering no change which corresponds to taking discharge,
charge or neutral actions, respectively. In models based on
shallow networks i.e. SQN and SNN, a network with two
layers is combined with clustering and feature selection [17].
A small representation of data using clustering. A sequential
stepwise process, called Backward Greedy Selection, is then
used to remove variables (features) that are irrelevant to the
neural network performance. The hidden layer of the network
is using a sigmoid transfer function and the output layer is
linear, trained with the Levenberg-Marquardt algorithm.

The python-based DL package tensorflow is used to imple-
ment the deep V2G control structures. Tensorflow provides the
benchmark implementations of convolution, pooling and fully-
connected layers for public usages. The DQN is composed of
five layers: 1) an input layer (52 dimension input composed
of the 50 delta electricity price pt − pt−1 of 50 hours in the
past along with their corresponding SoC and the time left
for departure); 2) a convolutional layer with 64 convolutional
kernels (each kernel is of length 12); 3) a max pooling layer;
4) a fully connected dense layer; and 5) a soft-max layer with
three outputs. The RNN contains an input layer, a dense layer
(128 hidden neurons), a recurrent layer, and a soft-max layer
for classification. The LSTM shares the same configuration as
RNN except for replacing the recurrent layer with the LSTM
module.

The training strategy of the deep networks is composed
of an iterative update of the weights in an online manner.
In practice, the first 1500 time points are used to set up
the network weights. At each parking hour, a new training
example (st, at, rt, st+1) is added to a defined buffer B (with
a finite capacity) that consists of recent V2G system history.
The examples in the buffer are used as a mini-batch to train
the Q-network following Eq. 3. The trained system is then
exploited to control the V2G system from 1501 to 2000. In
the next iteration, the sliding window of the training data is
moved 500 ticks forward covering a new training set from 500
to 2000 (Note that the first 500 time points of the input time

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

20

40

60

80

100

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0

500

1000

Double-DQN (Solid)

DQN (dashed)

Total bar length: total discharge gain 
total-profit (charge cost excluded)
charge-cost

Fig. 3: (Top panel) Hourly prices for the Nordpool electric-
ity market (Bottom panel) Proposed Double DQN vs DQN
performance

series employed for system initialization will not be used for
test phase). The parameters in the network are then iteratively
updated with the recently released data. This online updating
strategy allows the model to get aware of the latest V2G
system condition and revise its parameters accordingly.

The performances of the proposed Double-DQN system on
the electricity price data from January to December 2019 are
provided in Fig. 3. The total profit (blue part of the bar)
consists of the total gain obtained using energy discharged
(total bar length) excluding the cost of the energy charged
(yellow part of the bar) during each month. From the results,
it is observed that compared with the DQN system (bars
with dashed line-edges), the Double-DQN system (bars with
solid line-edges) makes more profits. It is because of the
increased stability of the Double-DQN due to attaching the
target network to the structure of the standard DQN. In the
Double-DQN structure, an iterative update adjusts the action-
values (Q) towards target values that are only periodically
updated. The network is then given more time to consider
many recent actions instead of updating all the time, thereby
reducing correlations with the target and resulting in a more
robust model.

The performance results of the proposed algorithm when the
departure SOC varies from 50% to 80% and the battery charg-
ing rate varies from 0.1 to 0.2 are shown in Table I. As we can
see from the Table, for all V2G control methods, the average
monthly profit increases as the charging rate increases while
the departure SoC stays the same. This is because increasing
charging rate gives rise to decreasing required charging hours
which means that more hours during the parking time can be
utilized to exchange power in order to increase the revenue. If
we compare the result of different departure SOC at the same
charging rate, it can be found that increasing the departure
SOC can result in an decreasing monthly profit. This is due to



TABLE I: Results of the average monthly profit under different charging rates C and expected departure SOCs.

Double DQN DQN SQN CDNN LSTM RNN SNN

C
=0

.1

SoC=0.5 521 438 302 283 431 119 91
SoC=0.6 513 425 294 275 427 95 88
SoC=0.7 502 411 288 264 410 79 72
SoC=0.8 488 396 276 251 400 66 59

C
=0

.2

SoC=0.5 527 441 311 295 438 121 93
SoC=0.6 519 432 303 281 429 101 90
SoC=0.7 511 417 295 275 421 83 81
SoC=0.8 505 408 282 262 409 74 69

the fact that more hours are required for charging in order to
meet the increasing departure SOC, which costs more money.

The results in Table I shows that in all charging rate and
departure SoC setting, the highest profits are made by Double-
DQN V2G system. This is due to its novel structure which
allows simultaneous environment sensing and optimum action
learning for V2G system control.

When taking the results of CDNN, RNN, LSTM and
SNN into considerations, the pitfalls of prediction-based NN
methods become apparent. By examining the total profit
values in Table I, only the LSTM could make comparable
profits while other deep RL-based systems. This is because
prediction-based systems only consider the electricity price
market to make decisions. The Double-DQN learns both price
condition and the action-value function Q(s; a) in a joint
framework. Moreover, electricity price signal is not like other
stationary or structured sequential signals, such as music,
that exhibit periodic and repeated patterns. The conventional
RNN configurations recursively remember the historical price
information cannot show an acceptable performance. Instead,
the LSTM only takes the current and the recent rice history
into consideration which helps the system to take a relatively
better actions.

V. CONCLUSION

Emerging smart grid systems will allow for more control
over the charging of EVs. In this work we presented a
V2G control system based on the deep Q-network (DQN)
structure. The system is composed of two major components:
a deep learning component that learns the system status, and
a Q-learning component that learns the action-value function.
However, the two components are integrated as one, in the real
implementation of the system. In order to obtain consistent tar-
gets during temporal difference calculations, a separate target
network is considered in the system thereby forming the final
Double-DQN structure. Experimental results show that the
proposed method outperforms the other state-of-the-art deep
V2G systems. The results on real electricity price demonstrate
the effectiveness of the learning system in simultaneous system
condition summarization and optimal action learning.
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